Raw Reflection RE

This page provides information about the Raw Reflection Render Element in V-Ray for Cinema 4D.

Overview

The Raw Reflection Render Element stores reflection information calculated from the materials' reflection values in the scene. Surfaces with no reflection values set in their materials contain no information in the render element, which means these areas render black. When the Raw Reflection Render Element is multiplied by the Reflection Filter, the Reflection Render Element is produced.

The Raw Reflection Render Element gives the full reflection of objects reflecting in the scene, while the Reflection Filter sets how much of that reflection should come through in the composite. In other words, the filter defines the strength of the reflection, while the raw image defines what is being reflected in the image. When these two elements are multiplied, the true level of reflection is given as the Reflection Render Element. Using these component parts of the reflection, you can fine-tune the reflection in your final composite.

UI Path: ||V-Ray|| > Render Elements > Raw Reflection

How to add a render element to a scene

Properties

Enable Deep Output - Specifies whether to include this render element in deep images.

Color Mapping - Applies the color mapping options specified in the Color Mapping rollo ut of the V-Ray tab in the Render Settings window to this render element. This option is enabled by default.

Consider for Anti-Aliasing - When enabled, anti-aliasing is used where possible.
Filtering - Applies an image filter to this channel.
Derive Raw Channels - Generates data in the raw channels by combining the respective color and the filter color channels.

Vfb Color Corrections - Applies the post-render color adjustments made from the VFB.
Denoise - Enables the render element's denoising, provided the Denoiser render element is present.

Properties
Enable Deep Output
\checkmark
Color Mapping
\vee
Consider for Anti-Aliasing
Filtering
Derive Raw Channels
Vfb Color Corrections
Denoise
\square

